Exercise 4

Find the general solution for each of the following first order ODEs:

$$
x u^{\prime}-4 u=2 x^{6}+x^{5}, x>0
$$

Solution

First rewrite the differential equation so that the coefficient of u^{\prime} is 1 .

$$
u^{\prime}-\frac{4}{x} u=2 x^{5}+x^{4}
$$

This is an inhomogeneous first order linear ODE, so we can multiply both sides by the integrating factor,

$$
I(x)=e^{\int-\frac{4}{x} d x}=e^{-4 \ln x}=x^{-4}
$$

to solve it. The equation becomes

$$
x^{-4} u^{\prime}-4 x^{-5} u=2 x+1 .
$$

Observe that the left side can be written as $\left(x^{-4} u\right)^{\prime}$ by the product rule.

$$
\frac{d}{d x}\left(x^{-4} u\right)=2 x+1
$$

Now integrate both sides with respect to x.

$$
x^{-4} u=x^{2}+x+C
$$

Therefore,

$$
u(x)=x^{4}\left(x^{2}+x+C\right), x>0
$$

